UniSoft NT Ltd

Machine for single crystal growth

Region of application

The machine is primarily for growing single crystals by the "Flax" method. This method is unique when: the compound melts with decomposition; has polymorphic transitions; has volatile components at high temperature; crystals with minimal internal stresses are required; or other specific properties are required.

Approximately 70% of inorganic compounds have to be grown by this method.

The apparatus also covers the "Czochralski" and "Kyropolus" methods at melting temperatures up to 1200°C.

A number of aluminates, silicates, germanates, tungstates, vanadates, borates, etc. can be grown. Single crystals are primarily intended for laser technology. Some of them are solid-state laser active media, and others are nonlinear optical materials for converting laser radiation.

Examples of laser active media: barium titanate (BaTiO₃), aluminum tungstate $Al_2(WO_4)_3$, potassium gadolinium tungstate (KGdWO₄)₂, potassium yttrium tungstate (KGdWO₄)₂, yttrium vanadate (YVO₄), etc.

Examples of nonlinear optical media: barium borate (BaB_2O_4), cesium lithium borate ($CsLi\ B_3O_6$), lithium triborate (LiB_3O_5), potassium titanyl phosphate ($KTiOPO_4$), etc.

Technological parameters

Due to the diverse properties of different substances, the growth of single crystals from them requires equipment with a wide range of each of the technological parameters:

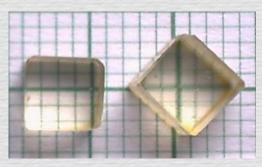
- Growth in the temperature range from 500 to 1200°C.
- Heating (cooling) rate from 0.05 to 5.0°C/hour.
- Revolutions of crystal rotation from 1 to 100 rpm (with an option for reverse rotation according to a set program).
- Temperature gradients in the melt from 1 to 20 °C/cm; crystal lifting speeds during growth from 15 to 1500 µm.
- Options for rapid cooling as well as rapid crystal lifting.
- Options for growing single crystals in air, inert, reducing, and oxidizing environments, as well as in vacuum.

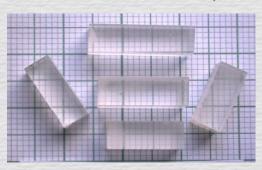
The equipment includes:

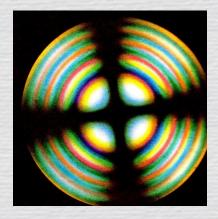
- Three-zone resistance furnace up to 1200 ° C.
- A precise three-channel temperature programmer with separate programs for each zone and temperature maintenance accuracy +/- 0.02 degrees.
- A precise mechanism for lifting the crystal during growth.
- A precision crystal rotation mechanism.
- Optical system for continuous diameter control and feedback with the temperature program: working chamber size diameter from 50 to 200 mm and height from 50 to 70 cm according to the request.

UniSoft NT Ltd

Machine for single crystal growth


Examples of grown crystals


KTiOPO₄ single crystal Potassium titanyl phosphate nonlinear optical crystal.


KYb_{0,9}Tm_{0,1}(WO₄)₂ single crystal Potassium yttrium tungstate doped with 10 atomic % thulium - laser crystal.

β – BBO THG 1064 – 355nm
Barium borate - nonlinear optical crystal. Elements for converting laser radiation from 1064 nanometers to 532 nanometers.

β – BBO EOM 4.5 x 5 x 11-18 nm Barium borate. Elements for optical parametric oscillators.

Interference picture of beta BaB₂O₄ single crystal

Indicates a very high quality of the crystal. Any defect would deform the interference.

NaAl(WO₄)₂ Sodium aluminum tungstate. Laser crystal.